(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
Tuples:

U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U12'(tt) → c1
U21'(tt) → c2
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U32'(tt) → c4
U41'(tt, z0) → c5(ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U61'(tt) → c8(0')
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__0) → c11
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
PLUS(z0, z1) → c17
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, z1) → c20
0'c21
S(z0) → c22
ACTIVATE(n__0) → c23(0')
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(z0, z1))
ACTIVATE(n__s(z0)) → c25(S(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(z0, z1))
ACTIVATE(z0) → c27
S tuples:

U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U12'(tt) → c1
U21'(tt) → c2
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U32'(tt) → c4
U41'(tt, z0) → c5(ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U61'(tt) → c8(0')
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__0) → c11
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
PLUS(z0, z1) → c17
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, z1) → c20
0'c21
S(z0) → c22
ACTIVATE(n__0) → c23(0')
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(z0, z1))
ACTIVATE(n__s(z0)) → c25(S(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(z0, z1))
ACTIVATE(z0) → c27
K tuples:none
Defined Rule Symbols:

U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate

Defined Pair Symbols:

U11', U12', U21', U31', U32', U41', U51', U52', U61', U71', U72', ISNAT, PLUS, X, 0', S, ACTIVATE

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27

(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 4 leading nodes:

PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
Removed 17 trailing nodes:

U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U12'(tt) → c1
ACTIVATE(n__x(z0, z1)) → c26(X(z0, z1))
U61'(tt) → c8(0')
ISNAT(n__0) → c11
S(z0) → c22
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c27
U21'(tt) → c2
ACTIVATE(n__s(z0)) → c25(S(z0))
PLUS(z0, z1) → c17
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(z0, z1))
U41'(tt, z0) → c5(ACTIVATE(z0))
U32'(tt) → c4
ACTIVATE(n__0) → c23(0')
0'c21
X(z0, z1) → c20

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
Tuples:

U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:

U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:

U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 18 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
K tuples:none
Defined Rule Symbols:

U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(7) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
Defined Rule Symbols:

U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(9) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
0n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
Defined Rule Symbols:

activate, 0, plus, s, x, isNat, U11, U21, U31, U32, U12

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

U11'(tt, z0) → c(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
We considered the (Usable) Rules:

isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U21(tt) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
0n__0
activate(z0) → z0
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__s(z0)) → U21(isNat(activate(z0)))
U12(tt) → tt
plus(z0, z1) → n__plus(z0, z1)
U32(tt) → tt
activate(n__0) → 0
activate(n__x(z0, z1)) → x(z0, z1)
s(z0) → n__s(z0)
activate(n__s(z0)) → s(z0)
U31(tt, z0) → U32(isNat(activate(z0)))
activate(n__plus(z0, z1)) → plus(z0, z1)
And the Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ISNAT(x1)) = x1   
POL(U11(x1, x2)) = [1]   
POL(U11'(x1, x2)) = x1 + x2   
POL(U12(x1)) = [1]   
POL(U21(x1)) = x1   
POL(U31(x1, x2)) = [1]   
POL(U31'(x1, x2)) = x2   
POL(U32(x1)) = [1]   
POL(U51'(x1, x2, x3)) = [1] + x1 + x3   
POL(U71'(x1, x2, x3)) = x3   
POL(activate(x1)) = x1   
POL(c(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c13(x1)) = x1   
POL(c14(x1, x2)) = x1 + x2   
POL(c3(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(isNat(x1)) = [1]   
POL(n__0) = 0   
POL(n__plus(x1, x2)) = [1] + x1 + x2   
POL(n__s(x1)) = x1   
POL(n__x(x1, x2)) = [1] + x1 + x2   
POL(plus(x1, x2)) = [1] + x1 + x2   
POL(s(x1)) = x1   
POL(tt) = [1]   
POL(x(x1, x2)) = [1] + x1 + x2   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
0n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
U11'(tt, z0) → c(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
Defined Rule Symbols:

activate, 0, plus, s, x, isNat, U11, U21, U31, U32, U12

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(13) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)

The following tuples could be moved from S to K by knowledge propagation:

U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
0n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
U11'(tt, z0) → c(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
Defined Rule Symbols:

activate, 0, plus, s, x, isNat, U11, U21, U31, U32, U12

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
We considered the (Usable) Rules:

plus(z0, z1) → n__plus(z0, z1)
activate(n__0) → 0
activate(n__x(z0, z1)) → x(z0, z1)
0n__0
activate(z0) → z0
s(z0) → n__s(z0)
activate(n__s(z0)) → s(z0)
x(z0, z1) → n__x(z0, z1)
activate(n__plus(z0, z1)) → plus(z0, z1)
And the Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ISNAT(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U11'(x1, x2)) = x2   
POL(U12(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U31'(x1, x2)) = [1] + x2   
POL(U32(x1)) = 0   
POL(U51'(x1, x2, x3)) = x3   
POL(U71'(x1, x2, x3)) = x3   
POL(activate(x1)) = x1   
POL(c(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c13(x1)) = x1   
POL(c14(x1, x2)) = x1 + x2   
POL(c3(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(isNat(x1)) = 0   
POL(n__0) = 0   
POL(n__plus(x1, x2)) = x1 + x2   
POL(n__s(x1)) = [1] + x1   
POL(n__x(x1, x2)) = [1] + x1 + x2   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = [1] + x1   
POL(tt) = 0   
POL(x(x1, x2)) = [1] + x1 + x2   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
0n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:

ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
U11'(tt, z0) → c(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
Defined Rule Symbols:

activate, 0, plus, s, x, isNat, U11, U21, U31, U32, U12

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
We considered the (Usable) Rules:

plus(z0, z1) → n__plus(z0, z1)
activate(n__0) → 0
activate(n__x(z0, z1)) → x(z0, z1)
0n__0
activate(z0) → z0
s(z0) → n__s(z0)
activate(n__s(z0)) → s(z0)
x(z0, z1) → n__x(z0, z1)
activate(n__plus(z0, z1)) → plus(z0, z1)
And the Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(ISNAT(x1)) = x1   
POL(U11(x1, x2)) = [1] + x1 + x2   
POL(U11'(x1, x2)) = x2   
POL(U12(x1)) = [1] + x1   
POL(U21(x1)) = [1] + x1   
POL(U31(x1, x2)) = [1] + x1 + x2   
POL(U31'(x1, x2)) = x2   
POL(U32(x1)) = [1] + x1   
POL(U51'(x1, x2, x3)) = [1] + x3   
POL(U71'(x1, x2, x3)) = [1] + x3   
POL(activate(x1)) = x1   
POL(c(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c13(x1)) = x1   
POL(c14(x1, x2)) = x1 + x2   
POL(c3(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(isNat(x1)) = x1   
POL(n__0) = [1]   
POL(n__plus(x1, x2)) = [1] + x1 + x2   
POL(n__s(x1)) = [1] + x1   
POL(n__x(x1, x2)) = [1] + x1 + x2   
POL(plus(x1, x2)) = [1] + x1 + x2   
POL(s(x1)) = [1] + x1   
POL(tt) = [1]   
POL(x(x1, x2)) = [1] + x1 + x2   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(z0, z1)
activate(n__s(z0)) → s(z0)
activate(n__x(z0, z1)) → x(z0, z1)
activate(z0) → z0
0n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:

U11'(tt, z0) → c(ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
S tuples:none
K tuples:

U51'(tt, z0, z1) → c6(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c9(ISNAT(activate(z1)))
U11'(tt, z0) → c(ISNAT(activate(z0)))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
U31'(tt, z0) → c3(ISNAT(activate(z0)))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)))
Defined Rule Symbols:

activate, 0, plus, s, x, isNat, U11, U21, U31, U32, U12

Defined Pair Symbols:

U11', U31', U51', U71', ISNAT

Compound Symbols:

c, c3, c6, c9, c12, c13, c14

(19) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(20) BOUNDS(1, 1)